Uniquely forced perfect matching and unique 3-edge-coloring

نویسندگان

  • Yezhou Wu
  • Dong Ye
  • Cun-Quan Zhang
چکیده

Let G be a cubic graph with a perfect matching. An edge e of G is a forcing edge if it is contained in a unique perfect matching M , and the perfect matching M is called uniquely forced. In this paper, we show that a 3-connected cubic graphwith a uniquely forced perfect matching is generated from K4 via Y → 1-operations, i.e., replacing a vertex by a triangle, and further a cubic graph with a uniquely forced perfect matching is 2-connected and contains a triangle. Our result generalizes a previous result of Jiang and Zhang (2011). The unique 3-edge-coloring conjecture asserts that a Petersen-minor-free cubic graph with a unique 3-edge-coloring must contain a triangle. Our result verifies that the unique 3-edge-coloring conjecture holds for a subfamily of uniquely 3-edge-colorable cubic graphs, namely cubic graphs with uniquely forced perfect matching. © 2016 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Edge Coloring Bipartite Graphs Eeciently

The chromatic index of a bipartite graph equals the maximal degree of its vertices. The straightforward way to compute the corresponding edge coloring using colors, requires O((2 n 3=2) time. We will show that a simple divide & conquer algorithm only requires O((3=2 n 3=2) time. This algorithm uses an algorithm for perfect k-matching in regular bipartite graphs as a sub-routine. We will show th...

متن کامل

Forcing Colorations and the Strong Perfect Graph Conjecture

We give various reformulations of the Strong Perfect Graph Conjecture, based on a study of forced coloring procedures, uniquely colorable subgraphs and ! ? 1-cliques in minimal imperfect graphs.

متن کامل

An Algorithm for Computing Edge Colorings on Regular Bipartite Multigraphs

In this paper, we consider the problem of finding an edge coloring of a d-regular bipartite multigraph with 2n vertices and m = nd edges. The best known deterministic algorithm (by Cole, Ost, and Schirra) takes O(m log d) time to find an edge coloring of such a graph. This bound is achieved by combining an O(m)-time perfect-matching algorithm with the Euler partition algorithm. The O(m) time bo...

متن کامل

On the computational complexity of finding a minimal basis for the guess and determine attack

Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 215  شماره 

صفحات  -

تاریخ انتشار 2016